TWISTYS - Μόλις η Hazel Grace συναντήσει την Demi Sutra, δεν μπορεί να επικεντρωθεί στη δουλειά πια, οπότε αποφασίζει να φάει το μουνί της
229,207 99%
TWISTYS - Molis i Hazel Grace synantisei tin Demi Sutra, den mporei na epikentrothei sti doyleia pia, opote apofasizei na faei to moyni tis
Once Hazel Grace Meets Demi Sutra She Can't Concentrate On Working Anymore So She Decides - TWISTYS
Πριν από 7 μήνες
Σχόλια
7
Παρακαλούμε συνδεθείτε ή εγγραφείτε για να δημοσιεύετε σχόλια
girls know what girls want....import threading
import nltk
from nltk.corpus import wordnet
from googleapiclient.discovery import build
# Ensure you have downloaded the required NLTK data
nltk.download('punkt')
nltk.download('wordnet')
# Set up YouTube API credentials
api_key = 'YOUR_YOUTUBE_API_KEY'
youtube_service = build('youtube', 'v3', developerKey=api_key)
# Define a function to generate videos from a text description
def generate_videos(description):
queries = generate_query_variations(description)
videos = []
for query in queries:
video_results = search_youtube(query)
videos.extend(video_results)
return videos
# Define a function to search for videos using YouTube API
def search_youtube(query):
request = youtube_service.search().list(
q=query,
part='snippet',
maxResults=10 # You can adjust the number of results
)
response = request.execute()
# Extract video details from the response
videos = response.get('items', [])
return videos
# Define a function to generate query variations
def generate_query_variations(description):
variations = []
tokens = nltk.word_tokenize(description)
for token in tokens:
synonyms = wordnet.synsets(token)
for synonym in synonyms:
# Get the synonym name
synonym_name = synonym.lemmas()[0].name()
# Create a query variation by replacing the token with the synonym
variation = description.replace(token, synonym_name)
variations.append(variation)
return variations
# Set up a text input event listener
def on_text_input(event):
description = event.text
videos = generate_videos(description)
update_video_results(videos)
# Integrate with YouTube API search bar (assuming this is part of some UI framework)
# youtube.search_bar.on_text_input = on_text_input
# Define a function to generate videos concurrently
def generate_videos_concurrently(description):
threads = []
queries = generate_query_variations(description)
videos = []
# Function to run in each thread
def search_videos(query):
video_results = search_youtube(query)
videos.extend(video_results)
# Create and start a thread for each query
for query in queries:
thread = threading.Thread(target=search_videos, args=(query,))
threads.append(thread)
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
return videos
#
import nltk
from nltk.corpus import wordnet
from googleapiclient.discovery import build
# Ensure you have downloaded the required NLTK data
nltk.download('punkt')
nltk.download('wordnet')
# Set up YouTube API credentials
api_key = 'YOUR_YOUTUBE_API_KEY'
youtube_service = build('youtube', 'v3', developerKey=api_key)
# Define a function to generate videos from a text description
def generate_videos(description):
queries = generate_query_variations(description)
videos = []
for query in queries:
video_results = search_youtube(query)
videos.extend(video_results)
return videos
# Define a function to search for videos using YouTube API
def search_youtube(query):
request = youtube_service.search().list(
q=query,
part='snippet',
maxResults=10 # You can adjust the number of results
)
response = request.execute()
# Extract video details from the response
videos = response.get('items', [])
return videos
# Define a function to generate query variations
def generate_query_variations(description):
variations = []
tokens = nltk.word_tokenize(description)
for token in tokens:
synonyms = wordnet.synsets(token)
for synonym in synonyms:
# Get the synonym name
synonym_name = synonym.lemmas()[0].name()
# Create a query variation by replacing the token with the synonym
variation = description.replace(token, synonym_name)
variations.append(variation)
return variations
# Set up a text input event listener
def on_text_input(event):
description = event.text
videos = generate_videos(description)
update_video_results(videos)
# Integrate with YouTube API search bar (assuming this is part of some UI framework)
# youtube.search_bar.on_text_input = on_text_input
# Define a function to generate videos concurrently
def generate_videos_concurrently(description):
threads = []
queries = generate_query_variations(description)
videos = []
# Function to run in each thread
def search_videos(query):
video_results = search_youtube(query)
videos.extend(video_results)
# Create and start a thread for each query
for query in queries:
thread = threading.Thread(target=search_videos, args=(query,))
threads.append(thread)
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
return videos
#
Απάντηση